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Abstract

Shrub encroachment into arid and semi-arid grasslands in the southwestern United States is of concern because increased shrub cover

leads to declines in species diversity, water availability, grazing capacity, and soil organic matter. Although it is well known that shrubs have

increased over time, we have little quantitative information related to the non-linear nature of this vegetation change over a particular period.

On the Jornada Experimental Range (JER; USDA-ARS) and the adjacent Chihuahuan Desert Rangeland Research Center (CDRRC; New

Mexico State University) in southern New Mexico, shrub increase has been measured with various ground survey techniques extending back

to 1858. For this study, we used 11 aerial photos taken between 1937 and 1996 that covered a 150-ha study area and had sufficient resolution

for shrub detection. A QuickBird satellite image provided coverage for 2003. We used image segmentation and object-based classification to

monitor vegetation changes over time. Shrub cover increased from 0.9% in 1937 to 13.1% in 2003, while grass cover declined from 18.5% to

1.9%. Vegetation dynamics reflected changes in precipitation patterns, in particular, effects of the 1951–1956 drought. Accuracy assessment

showed that shrub and grass cover was underestimated due to the constraint of the pixel size. About 87% of all shrubs N2 m2 were detected.

The use of object-based classification has advantages over pixel based classification for the extraction of shrubs from panchromatic aerial and

high-resolution satellite imagery. Incorporating both spectral and spatial image information approximates the way humans interpret

information visually from aerial photos, but has the benefit of an automated classification routine. Combining several scales of analysis in a

hierarchical segmentation method is appropriate in an ecological sense and allows for determining shrub density in coarser level classes.

Despite encountering difficulties in analyzing a greatly varying aerial photo data set, including variability in spectral and spatial resolutions,

moisture conditions, time of year of observation, and appearance of grass cover, aerial photos provide an invaluable historic record for

monitoring shrub encroachment into a desert grassland.

D 2004 Elsevier Inc. All rights reserved.
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1. Introduction

Shrub encroachment into arid and semiarid grass-domi-

nated landscapes has been noted in many parts of the

Southwestern United States (Archer, 1994; Archer, 1995;

Grover & Musick, 1990) and is of concern because shrub

increase reduces species diversity and has a direct influence
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on changes in the water, carbon, and energy cycles of these

arid lands (Schlesinger et al., 1990). In the Jornada basin of

southern NewMexico, vegetation surveys date back as far as

1858 (Gibbens et al., in press). Researchers at two rangeland

research field stations, the Jornada Experimental Range

(JER; USDA-ARS; 783 km2) established in 1912 and the

adjacent Chihuahuan Desert Rangeland Research Center

(CDRRC; New Mexico State University; 259 km2) estab-

lished in 1927, have used various ground survey techniques

to track long-term shrub increases from 1858 to 1998
ent 93 (2004) 198–210
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(Buffington & Herbel, 1965; Hennessy et al., 1983; Gibbens

et al., in press).

Although remotely sensed data only date back to the 1930s

(for aerial photography), they covermore extensive areas than

single plot studies, and spatial patterns are easier to discern

from photos than from the ground (Goslee et al., 2003; Rango

et al., 2002). Remote sensing has been used in many areas of

the world to track woody species encroachment (Brown &

Carter, 1998; Hudak & Wessman, 1998; McCloy & Hall,

1991; Whiteman & Brown, 1998). At the Jornada Exper-

imental Range, only one study examined shrub increase over

time using high-resolution images (Goslee et al., 2003).

Image classifications derived from images with relatively

large pixel sizes like 15–1000 m (MODIS, Landsat, AVHRR,

etc.) are usually based on the spectral information contained

in a single pixel. Smaller pixel sizes combined with fewer

spectral bands in aerial photography and new high-resolution

satellite imagery (IKONOS, QuickBird) can create classi-

fication problems due to greater spectral variation within a

class and a greater degree of shadow. Simple thresholding can

be applied to detect shrubs in panchromatic aerial photog-

raphy (Hansen & Ostler, 2001), but this can result in many

errors of commission and omission because shrubs may have

the same reflectance as some background areas.

However, much information is contained in the relation-

ship between adjacent pixels, including texture and shape

information, which allows for identification of individual

objects as opposed to single pixels (Thomas et al., 2003).

Such an object-oriented approach allows the user to apply

locally different strategies for analysis. Incorporating both

spectral information (tone, color) as well as spatial arrange-

ments (size, shape, texture, pattern, association with neigh-

boring objects) comes closer to the way humans interpret

information visually from aerial photos and has shown

success in mapping shrubs (Hudak & Wessman, 1998) and

detecting urban land use change (Herold et al., 2003).

Franklin et al. (2000), for example, found that the incorpo-

ration of texture in addition to spectral information increased

classification accuracy on the order of 10–15%.

Ecologically speaking, it is more appropriate to analyze

objects as opposed to pixels because landscapes consist of

patches that can be detected in the imagery with object-

based analysis. Pixels are aggregated into image objects by

segmentation, which is defined as the division of remotely

sensed images into discrete regions or objects that are

homogenous with regard to spatial or spectral characteristics

(Ryherd & Woodcock, 1996). Homogenous in this case

refers to the fact that the within-object variance is less than

the between-object variance.

Image segmentation is appealing for remote sensing

applications because human vision tends to generalize

images into homogenous areas. Research into image

segmentation is not new (Haralick et al., 1973) and several

methods exist. They can be broadly categorized into

measurement–space-guided spatial clustering, single-linkage

region growing, spatial clustering, hybrid–linkage region
growing, centroid–linkage region growing, and split-and-

merge methods (Haralick & Shapiro, 1985), or more simply,

into edge-based and area-based algorithms (Blaschke &

Strobl, 2001). Reed and Wechsler (1990) used a filter-based

approach to segment texture images, while Haddon and

Boyce (1990) incorporated edge detection into their seg-

mentation algorithm. Recent developments include a prob-

ability-based image segmentation approach (Abkar et al.,

2000) and a fractal net evolution approach (FNEA), which is

a multifractal approach (Baatz & Schaepe, 2000).

With the FNEA, images are segmented at different scales

which adds a scale hierarchy to the analysis (Burnett &

Blaschke, 2003; Hay et al., 2002). Such a multiresolution

analysis using image segmentation is driven by remotely

sensed data as well as expert knowledge, leading to a better

understanding of the image content because image informa-

tion is fractal in nature. This approach is also more

appropriate ecologically because objects in a landscape are

scale-dependent (Turner & Gardner, 1994). Unlike other

segmentation approaches, such as watershed algorithms,

region growing, orMarkov random fields, the FNEA requires

the user to determine certain scale-related parameters. A

specific level of analysis produces objects at a certain scale

(Blaschke & Hay, 2001). The network developed through

classification and interdependencies of image objects and

land use/land cover classes has been termed a spatial semantic

network (Benz et al., 2004).

Our objective was to use aerial photos for measuring

shrub and grass cover dynamics over a 66-year period in the

Jornada Basin of southern New Mexico by combining

multiresolution image segmentation and object-oriented

image classification. A second objective was to compare

the current shrub cover as measured from a 2003 QuickBird

satellite image to ground measurements.
2. Methods

2.1. Study area

Our research was conducted on the CDRRC located

approximately 28 km north of Las Cruces, New Mexico in

the northern part of the Chihuahuan Desert (Fig. 1). The area

is part of the Jornada Basin situated at about 1200 m

elevation between the Rio Grande Valley in the west and the

San Andres Mountains in the east. Average monthly

maximum temperatures range from 13 8C in January to 36

8C in June, and mean annual precipitation is 241 mm of

which more than 50% occurs in July, August, and September,

although rainfall amount and distribution can be highly

variable. Droughts, defined as years with b75% of mean

annual precipitation occurred in 18 years between 1915 and

1995 (Havstad et al., 2000).

We selected a 150-ha area in pasture 2 for our analysis.

Shrubby vegetation in the study area is comprised of honey

mesquite [Prosopis glandulosa Torr.], broom snakeweed



Fig. 1. Location of study area and rangeland research facilities in southern New Mexico.
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[Gutierrezia sarothrae], creosote bush [Larrea tridentata],

mormon tea [Ephedra torreyana], four-wing saltbush

[Atriplex canescens], and soap-tree yucca [Yucca elata].

Grasses include black grama [Bouteloua eriopoda], tobosa

[Pleuraphis mutica], dropseed species [Sporobolus spp.],

and bush muhly [Muhlenbergia porteri].

Mesquite is the dominant species in the study area today,

and historic records indicate that this species is the most

aggressive invading shrub in the Jornada basin (Buffington
& Herbel, 1965). Starting in the 1950s, herbicides were

applied to many pastures on the CDRRC. Those treatments

were effective in controlling the shrub advance if used on a

regular basis. Record keeping was not consistent, and the

widespread use of herbicides has made it difficult to assess

how rapidly the shrubs were invading grassland areas in the

last 60+ years. According to CDRRC records, pasture 2 was

only treated with herbicides twice, in June 1973 and June

1984, and the treatment efficacy was relatively low.



Table 2

Segmentation parameters used for the analysis

Segmentation

level

Scale Color Shape Shape settings

Smoothness Compactness

Level 1 3 0.8 0.2 0.8 0.2

Level 2 250 0.8 0.2 0.5 0.5

Scale is a unitless parameter related to the image resolution. Values for

color and shape as well as smoothness and compactness are weighting

factors ranging from 0 to 1.
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2.2. Image analysis

Since 1936, 37 separate aerial photography missions have

been flown over the Jornada Basin. Recently, the area has

been imaged with high-resolution commercial satellites as

well. We selected 11 aerial photos that covered the study area

and had sufficient resolution for shrub detection. A Quick-

Bird satellite image was used for the 2003 coverage of the

area. For the aerial photography, we scanned the film with an

Epson 1640 XL large-format flatbed scanner at 1200 dpi

(dots per inch) in 8 bits for grayscale and 24 bits for color and

color infrared film. The images were color balanced,

imported into Erdas Imagine 8.6 and georectified to a digital

orthoquad image of the area. All images were resampled with

the nearest neighbor method to a common resolution of 86 cm

(Table 1). Nearest neighbor resampling was used because it is

computationally simple and does not alter original pixel

values (Lillesand &Kiefer, 2000). All images were smoothed

with a low-pass filter using a 3�3 kernel to reduce the spatial

frequency. Such a slightly blurred image will produce a

segmentation with fewer andmore homogenous areas, so that

shrubs are more likely to be represented by fewer polygons.

We chose to resample to a common resolution so that

shrubs of interest would be either equal to or larger than the

pixel size; a shrub would therefore represent a high resolution

or H-res object (Hay et al., 2001; Woodcock & Strahler,

1987). If images were to be analyzed in their native re-

solution, shrub cover would presumably be somewhat higher

in high resolution images because small shrubs could be

resolved in high resolution but not in lower resolution images.

Therefore, our approach does not represent shrub cover at the

original image scale, but it allowed us to compare shrub cover

at the chosen scale across time. Radiometric normalization of

the images was not deemed necessary because the object-

oriented image analysis approach relied on the differences

between shrubs and background, not on absolute brightness

values that could be compared across images.

We used the fractal net evolution approach (FNEA), which

is an object-oriented multiscale image analysis method
Table 1

Images used in the analysis

Year Type Resolution (m)

1937 Pan 0.61

1947 Pan 0.23

1955 Pan 0.24

1960 Pan 0.43

1967 Pan 0.46

1973 Pan 0.78

1977 CIR 0.42

1980 Color 0.68

1989 Color 0.52

1991 CIR 0.59

1996 CIR 0.86

2003a Pan 0.60

Pan, panchromatic; CIR, color infrared.
a QuickBird satellite image.
embedded in the software eCognition (Baatz & Schaepe,

2000; Definiens, 2003). The first step is a segmentation of the

image based on three parameters: scale, color (spectral

information), and shape (smoothness and compactness),

where color and shape parameters can be weighted from 0

to 1. Within the shape setting, smoothness and compactness

can also be weighted from 0 to 1. Scale is a unitless parameter

related to the image resolution. Table 2 shows the images and

the segmentation parameters used in this study. The

segmentation used in eCognition is a bottom-up region

merging technique, where the smallest object contains one

pixel. In subsequent steps, smaller image objects are merged

into larger ones based on the chosen scale, color, and shape

parameters, which define the growth in heterogeneity

between adjacent image objects. This process stops when

the smallest growth exceeds the threshold defined by the

scale parameter. A larger-scale parameter results in larger

image objects (Benz et al., 2004).

This procedure produces highly homogeneous segments

in a selectable resolution and of a comparable size.

Classification is then performed using those objects rather

than single pixels. The multiresolution segmentation

approach allows for segmentation at different scales, which

is used to construct a hierarchical network of image objects

representing the image information in different spatial

resolutions simultaneously. The image objects bknowQ their
horizontal neighbors (adjacent objects on the same level) as

well as their vertical neighbors (objects on different

hierarchical levels); the latter are also termed sub-objects

and super-objects. This allows for differentiation of individ-

ual shrubs on the lower level, and determination of different

shrub density classes on a higher level.

The classification of the image objects can be performed

by using nearest neighbor classifiers based on user-selected

samples or by using membership functions, based on fuzzy

logic theory combined with user-defined rules. A member-

ship function ranges from 0 to 1 for each object’s feature

values with regard to the object’s assigned class. The fuzzy

rule base defines criteria such as ball image objects darker

than a certain brightness value are shrubsQ. Spectral, shape,
and statistical characteristics as well as relationships

between linked levels of the image objects can be used in

the rule base to combine objects into meaningful classes

(Benz et al., 2004).

The image analysis steps are described below and graphi-

cally in the flowchart (Fig. 2). We segmented the images at



Fig. 2. Workflow of image analysis.
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two scales of the image object hierarchy: a fine scale to

capture single shrubs and a coarser scale to define broader

landscape elements. Shrubs were then classified on the fine-

scale level by defining the following membership functions:

(1) mean brightness value,

(2) mean difference to neighbors, and

(3) mean difference to super object.

If only membership function 1 is used, which is com-

parable to a thresholding procedure, large portions of dark

background (occurrences of black grama) are classified as
shrubs. Membership function 2 determines the layer mean

difference for neighboring objects weighted with regard to

the length of the border between objects. Membership

function 3 determines the layer mean difference values

between objects on the fine scale to objects at the coarser

scale level. All three functions generate equal weight in the

analysis and were combined by a logic bandQ (minimum

operator) function, which equals the minimum fulfillment of

the single statements. Using this combination of member-

ship functions is similar to how humans analyze an image

and recognize shrubs in a dark background (shrubs

occurring with black grama) as well as in a light background

(against a bright soil background).

In addition to the shrub classification, we also performed

a classification at the coarser level to determine how grass

cover had changed over time. Because shrubs and grasses

had similar brightness values in panchromatic imagery and

could be confused with each other, a segmentation resulting

in polygons larger than the largest shrub patch allowed for

separation of grasses and shrubs. This classification was

performed using a standard nearest neighbor classifier, with

user-selected samples similar to a supervised classification in

a pixel-based image analysis system. The image was

classified into four classes: playa, bright soil, grass, and

others. The samples (polygons) were selected by brightness

values: bright soil represented the highest (brightest) values,

grass the lowest (darkest) values, playa was a visible feature

and all other polygons were placed in the dothersT class. This
discrimination of classes was based on our knowledge that

black grama in our study area had low reflectance values in

aerial photos. Due to the limitations with historic images, we

were only able to map distinct areas of black grama and

bright soil; therefore, the dothersT class is relatively large.

By using information from both classification levels, we

were then able to determine percent shrub cover in level 1

within the level 2 classes. Finally, a classification-based

segmentation was performed. This is an advanced segmen-

tation based on the previous classifications of both levels

with the aim of creating a final classification. In this last step,

the classified levels were merged to incorporate classes from

both levels (shrub, grass, playa, bright soil, and others).

2.3. Ground truthing

It was assumed that the classification accuracy of the aerial

photos was similar to the satellite image, which was the only

one we could use for accuracy assessment. We randomly

located twenty 400 m2 plots in the pasture 2 study area to

compare percent shrub cover from the classification of the

2003 QuickBird image with ground-based measurements.

Field work was conducted on February 2004. We used a

Trimble Pro XRR GPS unit to determine the plot corners and

then traced the perimeter of each shrub that was larger than 50

cm in diameter in a walking survey. After differential

correction, the area of each shrub was calculated. A previous

experiment had shown a high correlation between shrub areas
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measured from GPS and shrub areas manually measured by

taking the product of the longest axis of the shrub and the axis

perpendicular to it (n=61, P=0.0019, R2=0.9891; data not

shown). In addition to comparing shrub areas in the plots, we

also determined the size of shrubs that could be detected and

classified with the QuickBird image. Due to the small amount

of grass cover in the study area, we were able to determine

total grass cover with GPS measurements as well and

compare this with grass cover from the classification.
Fig. 3. Shrub cover change from 1937 to 2003, based on results from an object-b
3. Results

3.1. Vegetation change

Shrub cover increased from 0.9% in 1937 to 13.1% in

2003 in pasture 2 (Fig. 3). The greatest increase occurred

between 1937 and 1947 (38% increase). In 1960, shrub cover

increased to 10.9%, decreased in 1967, then fluctuated around

8% before resuming an increase from 1991 to 2003 (Fig. 4).
ased classification of the images on level 1 of the image object hierarchy.
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The high shrub cover in 1960 may be partially attributed to

image quality. Although all images were resampled to the

same pixel size, shrubs appeared larger and separate shrubs

tended tomerge in the 1960 image. Although shrubs appeared

to be less defined in the 2003 QuickBird image compared to

the aerial photos, visual inspection confirmed that a larger

proportion of small shrubs were captured. This was related to

the greater bit depth of the QuickBird image.

The objective of the classification at level 2 of the image

object hierarchy was to determine changes in grass cover

over time (Fig. 5). Grass cover decreased from 18.5% in

1937 to 1.9% in 2003 (Fig. 4). As shrub cover increased,

grass cover decreased over time. This is especially noticeable

from 1937 to 1960, and again after 1996. The high value for

grass cover in the image taken on October 8 1996 is related

to a higher than average precipitation for September. Data for

six rain gauges located within a 6-km radius of the study area

indicated that the September precipitation was on average

72% higher (range, 33–99%) than the long-term rainfall data

(1937–2003) for the same month (Table 3).

We calculated the percent shrub cover within the four

classes of the level 2 classification. Percent shrub cover

within three classes (grass, bright soil, and others) followed

the same trend until 1955, then diverged with higher shrub

cover in the grass compared to the bright soil and others

classes (Fig. 6). After 1989, the shrub cover in these classes

was similar. The playa showed a peak for percent shrub

cover in 1967, then decreased and fluctuated similar to

shrub cover in the other three classes. Sometime after 1967,

mesquite plants in the playa were removed while improving

a watering tank for livestock. The peak for the grass and

others classes in 1960 should be treated with caution due to

the image quality discussed above.

3.2. Object-oriented image analysis for shrub detection

The use of object-oriented image analysis proved to be

advantageous in this study. Shrubs were present in both dark

and light backgrounds, which could have presented a
Fig. 4. Dynamics of shrub (!) and grass (o) cover from 1937 to 2003.

Results are based on the merged classification of levels 1 and 2 of the image

object hierarchy.
problem using a pixel based analysis. Fig. 7(a) shows a

portion of the original QuickBird image that was segmented

at a lower level (b) and at a higher level (c) of the image

object hierarchy. A classification using only the mean

spectral reflectance of the segmented objects (similar to a

pixel based classification) at level 1 resulted in an over-

estimation of shrubs in the playa due to similar spectral

properties of shrubs and portions of the background as well

as many missed shrubs in other areas (d). Incorporating the

linkage between neighboring objects and different levels

allowed for differentiating shrubs in the dark background of

the circular playa by including two additional membership

functions: the mean difference to the super-object and the

mean difference to neighbors. This resulted in an improved

classification of shrubs (e). The final step was to perform a

classification-based segmentation to combine the classifica-

tions of levels 1 and 2 in a final merged classification (f).

3.3. Accuracy assessment

The mean shrub area for the 20 ground truthing plots (400

m2) was 82.7 m2 for the GPS measurements compared to

61.5 m2 for the image classification (P=0.008). It was

expected that the classification would underestimate the

actual shrub cover on the ground for two reasons. First,

shrubs are outlined exactly with GPS, but are gross general-

izations in a classification, which depicts shrubs as multiple

blocks of pixels. The outer perimeter of a shrub contains

lighter pixels than the interior, and because we traced shrub

perimeters at the furthest most branches from the shrub

center, areas of lighter pixels were often missed at the edges

of shrubs. Therefore, many classified shrubs were smaller

than the GPS outlines. Secondly, we included every shrub

N50 cm in diameter in the GPS measurements, and many

small shrubs were not detected in the classification. Small

shrubs were included in the ground survey to determine a

cutoff size at which shrubs could actually be classified. The

size distribution for the shrubs showed that shrubs not

detected by the classification had a mean area of 1.6 m2

compared to 8.4 m2 for detected shrubs (Table 4). About

87% of all shrubs larger than 2 m2 were detected.

The area of grass from the classification was 2.2 ha

compared to 2.6 ha from theGPS ground truthing. There were

errors of commission and errors of omission, and as with the

shrubs, grass areas were underestimated due to the exact

outline of the GPS method compared with the more blocky

classification. We assumed that the accuracy for aerial photos

would be similar to the one obtained from the QuickBird

image because all analyses were done on the panchromatic

band and all images were resampled to the same resolution.
4. Discussion

In this pasture 2 study area, the average rate of increase

of shrub cover percentage was about 0.2% per year over the



Fig. 5. Changes in land cover classes from 1937 to 2003, based on results from an object-based classification of the images on level 2 of the image object

hierarchy.
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66-year period. However, most of the shrub increase

occurred between 1937 and 1955, if we ignore the peak in

1960 that was caused by image quality; this is the same

period during which grass cover decreased dramatically.

Similar observations have been recorded on the adjacent

Jornada Experimental Range, where transect data from a

259-ha enclosure showed that black grama had a 71%
frequency in 1935, and decreased sharply between 1950 and

1955 from 56% to 9% frequency. In that same area,

mesquite canopy frequency doubled between 1935 and

1980, with over half of this increase occurring between

1935 and 1950 (Hennessy et al., 1983). In another study of

permanent 1-m2 quadrats, it was shown that perennial grass

basal area was positively associated with the precipitation of



Table 3

Precipitation data (in mm) for six rain gauges within a 6-km radius of the

study area for September 1996 compared to long-term average (1937–2003)

for September

Rain gauge September 1996 Long-term average for September

Camp well 63.5 36.8

Selden well 46.2 34.8

Headquarters 68.1 34.3

Parker heights 65.3 34.8

V.M. playa 50.6 29.2

P 3 south 53.1 32.0

Fig. 6. Percent shrub cover in four classes of the level 2 classification

shown in Fig. 4.
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the previous 3–4 years and that drought had a strong

influence on black grama (Gibbens & Beck, 1988).

Precipitation data from 1937 to 2003 are shown in Fig. 8.

The stages and thresholds of this desertification process

have been described recently by Peters et al. (in press).

The severe drought that occurred in 1951–1956 was one

of the major factors in this vegetation change (Buffington &

Herbel, 1965), leading to a decrease in black grama, which

was followed by the spread of mesquite into areas

previously occupied by black grama. The mesquite is more

successful during dry periods because unlike grasses, shrubs

can take advantage of moisture located deeper in the soil

profile. This vegetation change alters site conditions,

favoring the formation of mesquite dunes and altering soil

water regimes, which in turn makes it difficult for black

grama to become established again, even if moisture

conditions become favorable for grasses (Archer, 1995;

Hennessy et al., 1983). Unfortunately, we lack additional

image data during the drought period to document those

vegetation changes in more detail. The increase in shrub

cover from 1991 to 2003 may be related to the general

decline in precipitation since 1992. Although an increase in

precipitation was observed from 1994 to 2000, precipitation

levels after 2000 have been nearly as low as they were in the

1951–1956 drought.

Shrub cover was variable in some years. This variation

may be an artifact of different image quality or a biological

reality. We observed a decline in shrub cover after the

January 1973 image was taken. This may be attributed to

herbicide spraying in pasture 2 in June 1973. The effects

were observed on the 1977 aerial photo where a linear

pattern was visible in the southern part of the study area.

This effect can also be seen on the shrub classification maps

(Fig. 3), where this pattern is first visible in 1989, then

becomes more defined from 1991 through 2003. In the 2003

QuickBird image, the pattern is especially noticeable.

Another pattern visible on the shrub classification maps

are lines of dense shrubs running from the southwest to the

northeast; those lines are old cattle trails. Cattle are very

effective at dispersing mesquite seeds because they consume

mesquite beans, and seeds remain viable after passage. In

fact, passage through the digestive tract may increase seed

germination two- to threefold (Brown & Archer, 1987).

Once plants are established, they facilitate the recruitment of

new plants (Archer, 1995). The lines of dense shrubs appear
to get fainter over time; however, close-up investigation

showed that shrubs did not disappear over time, but that

other shrubs filled in around the original plants, making the

lines appear less distinct. The trails were probably estab-

lished during a time of heavier grazing pressure, which

occurred in pasture 2 from 1936 to 1953 (7.2 AUD/ha

(animal unit days)). From 1954 to 1963, grazing was

reduced to 0.9 AUD/ha. Around this time, grazing was also

changed from year round to summer into early fall grazing

at 4.8 AUD/ha during the 1970s and 1980s. In the 1990s,

fences were moved and grazing has been minimal due to

lack of permanent water source. However, the old trails

remain visible due to the denser growth of mesquite shrubs.

Broad-scale patterns on the landscape such as cattle trails

and evidence of herbicide spraying are often detected only

with remotely sensed imagery and may be difficult or

impossible to discern on the ground. Therefore, remote

sensing is a valuable tool for tracking such patterns over

time or determining past treatments that may not have been

recorded elsewhere (Goslee et al., 2003; Rango & Havstad,

2003; Rango et al., 2002).

Shrubs increased in this study area from 1937 to 2003

regardless of whether they were located in the grass, bright

soil, or others classes (Fig. 6). However, shrub cover within

the grass class was higher after 1955 until 1989. This is in

agreement with the theory that the 1951–1956 drought was

a major factor in vegetation change. Grasses (especially

black grama) decreased during the drought, which allowed

the shrub cover to increase in areas occupied by grasses.

After 1989, shrub cover increased in all classes, presumably

because of a general decline in precipitation. The playa had

denser shrub cover than the other classes until 1967, when a

sudden drop in shrub cover occurred. This was attributed to

a mechanical shrub removal in the playa between 1967 and

1973 in order to improve livestock watering facilities.

The correlation between ground-based shrub measure-

ments and estimates from image classification depends on

the size of shrubs and image resolution (Ansley et al., 2001;

Goslee et al., 2003). Our images contained many small

shrubs and only 29% of shrubs smaller than 2 m2 were



Fig. 7. Steps in the segmentation and object-based analysis of the images. (a) Portion of original QuickBird image, (b) segmentation at level 1 of the image

object hierarchy, (c) segmentation at level 2, (d) classification using only the mean spectral reflectance of the segmented objects results in overestimation of

shrub cover, (e) linkage between neighboring objects and level 2 objects results in improved classification of shrub cover, and (f) classification-based

segmentation results in merged classification of both levels.
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detected, resulting in an underestimation of shrub cover

from the classification. Although visual assessment showed

a very good correlation between the shrub outlines from

GPS compared to the classification, we have to accept an

inherent error associated with measuring relatively small

shrubs with a moving GPS unit.

In order to assess how closely our grass classification

resembled actual conditions in the 1930s, we located early

survey information. In a 1935–1938 vegetation survey, only

2% of the area was dominated by mesquite, while the rest

was dominated by grass: 63% of the area was occupied by

dropseed, 34% by black grama, and 1% by tobosa. It is

somewhat difficult to compare our classification from aerial
Table 4

Statistics from ground truth data for shrubs that were detected and not

detected with the image classification

All shrubs Detected Not detected

Count 270 180 90

Mean area (m2) 6.12 8.39 1.58

Standard error 0.55 0.77 0.12

Minimum 0.28 0.31 0.28

Maximum 75.13 75.13 6.90
photography with the vegetation survey map. Those surveys

produced quite broad boundaries for vegetation, lacking the

detail that can be seen from aerial photos. On the other hand,

the dropseed genera are more difficult to detect from aerial

photos compared to black grama or tobosa because these

latter species have a more distinct reflectance. For this study,

we did not try to distinguish between black grama and

tobosa because both appeared similar in panchromatic aerial

photos. The vegetation surveys from 1935 to 1938 did not

mention mesquite as a second or third dominant species in

the dropseed or black grama class; therefore, we assumed

that areas we classified as bothersQ in 1937 were in fact

predominantly grasslands, although we detected some

shrubs in them.

The difficulties we encountered related to varying image

qualities of the aerial photos. Unfortunately, we had little

metadata on film and camera type for the aerial photog-

raphy. Spatial and spectral resolution, contrast, and sun

angle were highly variable for the set of images used.

Although all images were resampled to a common spatial

resolution, differences in quality were still evident. A case in

point was the 1960 image, in which shrubs tended to blur

together, making them appear larger than in the other



Fig. 8. Mean annual precipitation at Selden Well rain gauge, located 2.5 km from study area. Horizontal line indicates mean rainfall.
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images. This led to a probable overestimation of shrub cover

for that year.

Another difficulty lay in separating image quality from

ecological variations because the images were taken at

different times of the year. Moisture conditions vary not

only over long periods but precipitation patterns are also

highly variable from one year to the next in this region. In

addition, grasses are able to respond relatively quickly to a

rain event, which was evident in the October 1996 image,

which showed a peak in grass cover due to high

precipitation in September. Some suffrutescents, such as

broom snakeweed, can also respond to rain and may be

confused with black grama. For a series of images ranging

from 1937 to 2003, all taken at different times of the year

and with varying qualities, one important indicator of

change is the general trend of vegetation cover over time.

Peaks and troughs in the vegetation cover are often related

to precipitation events, but effects due to image quality have

to be taken into consideration.

Although we performed the same analysis on both the

aerial photos and the satellite image, some differences

between the imagery have to be kept in mind. The fact that a

larger proportion of small shrubs were captured with the

QuickBird image is associated with the different bit depth in

the QuickBird image compared to the aerial photos. With

aerial photography, data are placed into 256 levels (8 bits of

data in a binary encoding system). The bands of the

QuickBird sensor are placed into 2048 levels (11 bits),

giving the latter a higher radiometric resolution which

allows for a greater grey-scale range. In addition, poor

quality and lack of contrast in some of the aerial

photography prevented the capturing of many small shrubs.

This analysis compared only classified shrubs with those

measured on the ground. However, we noticed that many

shrubs measured with GPS could actually be seen on the
QuickBird images, but were not captured with the object-

based classification. One reason for this is that we only used

the panchromatic band of the QuickBird image and it was

degraded from the original 61-cm resolution to 86 cm. It is

possible that more shrubs can be captured with QuickBird

images by exploiting the original pixel size and multi-

spectral information in a pan-sharpened image. Another

reason is related to the values in the membership functions.

Further fine tuning of the values chosen for mean bright-

ness, mean difference to neighbors and mean difference to

super-object may increase the number of shrubs captured by

including brighter objects (shrubs) without including rela-

tively similar brighter backgrounds (soil surfaces).

The object-based classification techniques used in this

study proved a valuable tool for detecting vegetation change

over time and were especially applicable to the detection of

shrubs. Objects of similar spectral reflectance as shrubs

could be omitted by describing differences between

neighboring objects as well as objects on a different

hierarchical level. In addition, the linking of levels allowed

for the analysis of shrub densities in higher level classes.

Although the segmentation algorithm used here performed

well with our images, it would be worthwhile to investigate

if other multifractal segmentation techniques (Chaudhuri &

Sarkar, 1995; Vehel & Mignot, 1994) could improve class

boundaries.

Future studies will examine alternative approaches to

analyzing images of different resolutions. Rather than

resampling all images to the same pixel size, an alternate

approach would be to use object-specific analysis and

upscaling (Hay et al., 2001), where spatial measures specific

to the image are used in a weighting function to resample or

upscale an image to a coarser resolution. Related techniques

are described by Woodcock and Strahler (1987) and

Marceau et al. (1994).
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5. Conclusions

In this study, we assessed the rate of shrub encroach-

ment into a desert grassland using remotely sensed

imagery. Although shrub increase in the Jornada Basin

has been well documented using plot level data, imagery

covers larger areas and can give insights into overall

spatial and temporal patterns. In this study area, shrub

cover increased and grass cover decreased over time, but

these changes were nonlinear. The vegetation dynamics

reflected influences from livestock due to mesquite

establishment along cattle trails as well as broad- and

fine-scale changes in precipitation patterns. At a fine scale,

a peak in grass cover was observed in an image taken after

a particularly wet month (September 1996). During and

following the 1951–1956 drought, shrub cover increased

and grass cover decreased at a greater rate than in the

following years, except for 1991–2003. The increase in

recent years was attributed in part to a general decline in

precipitation since 1992 and the higher radiometric

resolution of the QuickBird image.

Although the trends in the vegetation dynamics followed

those of long-term plot data recorded over time, the image

analysis tended to underestimate shrub cover due to a lower

level of detail in the classification compared to GPS ground

truth data. Nevertheless, 87% of shrubs larger than 2 m2

were detected with the classification. The object-oriented

multiscale image analysis method used here has several

advantages over a pixel-based classification approach when

the goal is the extraction of relatively small objects such as

shrubs from panchromatic aerial photos and high-resolution

satellite images. This method approximates the way humans

interpret information visually from aerial photos, but has the

advantage of an automated classification routine. In a

traditional pixel-based classification, it would prove difficult

to classify small shrubs and larger land cover areas in the

same step without getting a significant bsalt and pepper

effectQ. Image segmentation at multiple resolutions allowed

for analysis at the shrub level and for grasses at a coarser

level with a subsequent merging of both classifications.

With a hierarchical image analysis, the same image is

classified at different scales. Classified objects on one scale

are kept separate from those on another scale, but can be

merged by applying expert knowledge, a method that is

appropriate in an ecological sense.

Using aerial photos in automated image analysis brings

with it many challenges, including differences in contrast,

spectral and spatial resolutions, sun angle and time of day/

year of acquisition. Nevertheless, historical photos in

conjunction with plot-based records and appropriate ground

truth information provide an important record of vegetation

dynamics over time. The techniques described here show

promise for quantifying shrub encroachment using aerial

and high-resolution satellite imagery over larger areas, so

that proper management practices can be applied at the

proper times to these sites.
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